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ABSTRACT

Non-uniformity of the solar atmosphere along with the presence of non-adiabatic processes such as radiation cooling

and unspecified heating can significantly affect the dynamics and properties of magnetoacoustic (MA) waves. To

address the co-influence of these factors on the dispersion properties of MA waves, we considered a single magnetic

slab composed of the thermally active plasma. Using the perturbation theory, we obtained a differential equation

that determines the dynamics of the two-dimensional perturbations. Applying the assumption of strong magnetic

structuring, we derived the dispersion relations for the sausage and kink MA modes. The numerical solution of the

dispersion relations for the coronal conditions was performed to investigate the interplay between the non-uniformity

and the thermal misbalance. For the heating scenario considered, it was obtained that the phase speed of both the

sausage and kink slow MA waves is highly affected by the thermal misbalance in the long wavelength limit. The

obtained characteristic timescales of the slow waves dissipation coincide with the periods of waves observed in the

corona. Simultaneously, the phase speed of the fast waves is not affected by the thermal misbalance. The geometry of

the magnetic structure still remains the main dispersion mechanism for the fast waves. Our estimation reveals that

dissipation of the fast waves is weaker than dissipation of the slow waves in the coronal conditions. The obtained

results are of importance for using the magnetoacoustic waves not only as a tool for estimating plasma parameters,

but also as a tool for estimating the non-adiabatic processes.
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1 INTRODUCTION

Non-uniformity of the solar atmosphere is largely associated
with a strong magnetic field that provides for formation and
long existence of various plasma structures like coronal loops,
plumes and prominences. In fact, these structures are perfect
waveguides for the so-called magnetohydrodynamic (MHD)
modes (see e.g. Nakariakov & Kolotkov 2020; Banerjee et al.
2021, for recent reviews).

Due to the magnetic field, there are two pressure contribu-
tions into the plasma: the gasdynamic and magnetic pressure.
When these forces are acting together and in opposition, they
give rise to rapid and slow compression perturbations that are
known as the fast and slow magnetoacoustic (MA) waves, re-
spectively (see Roberts 2019; Priest 2014, for details). In the
magnetically structured plasma, these waves may have some
additional properties. In particular, MA perturbations have
possibilities to be trapped or to leak out of the magnetic
structure (trapped/leaky modes), to evolve inside the struc-
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ture or only near its boundary (body/surface modes), to have
a different axial symmetry (kink/sausage/fluting modes), etc.
As a result, there are a wide variety of wave types correspond-
ing to a different evolution way of compression perturbation.

Nowadays, with the help of groundbased and orbital in-
struments, there is a plenty of observational data (intensity
variations, Doppler shifts, etc) that can be associated with
various types of MA modes. In particular, a recent review
concerning the slow MA waves can be found in (Wang et al.
2021). An extensive discussion on the fast kink modes is pre-
sented in (Nakariakov et al. 2021). Some observations and
modelling of fast sausage waves are discussed in a recent re-
view by Li et al. (2020).

The combination of the MHD theory and observational
data allows us not only to associate the observations with
a particular mode type but also to use waves as a diagnostic
tool for in situ conditions in the solar atmosphere: the local
Alfvén speed (Cho et al. 2017), transfer coefficients (Wang
et al. 2015), adiabatic index (Prasad et al. 2021), magnetic
field strength (Jess et al. 2016) etc. The idea that waves could
be used to unravel seismological information about the solar
atmosphere has become fundamental for the MHD- and coro-
nal seismology – a branch of solar physics probing the param-
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eters of the upper solar layers by MHD waves and oscillations.
The pioneering works in this scientific field are the studies
by Zaitsev & Stepanov (1975, 1982) and Edwin & Roberts
(1983), devoted to MHD waves propagation in a magnetic
cylinder that is in magnetostatic balance with the surround-
ing ideal plasma and is composed of ideal plasma, as well.

In reality, the coronal plasma is non-ideal, since the so-
lar atmosphere is subject to such non-adiabatic processes as
radiation cooling and unspecified heating. Thus, for a mag-
netic structure to exist for a long time, not only a mechanical
balance but also some equilibrium between heating/cooling
processes have to be stated. In turn, coronal radiative cool-
ing is known as a function of density and temperature (Del
Zanna et al. 2021). Unspecified heating is also often modelled
as a function of plasma parameters (Rosner et al. 1978a; Car-
bonell et al. 2006). Due to this fact, some compression per-
turbation in the medium (e.g. MA wave, or entropy/thermal
wave) can destroy the balance between these processes and
the enhanced or suppressed heating/cooling will subsequently
affect the compression waves back. As a result, some feedback
between compression waves and non-adiabatic processes will
take place. Such effect is known as thermal misbalance or
heating/cooling misbalance.

A recent review concerning the problem of thermal mis-
balance in the solar atmosphere can be found in (Kolotkov
et al. 2021). It was shown by Zavershinskii et al. (2019) and
Kolotkov et al. (2019) that the thermal misbalance can sig-
nificantly affect the dispersion properties of slow waves in the
solar corona. This leads to the dependence of the phase speed
and growth/decay rate on the wave period and can cause am-
plification of waves or their additional damping. As a result,
the heating/cooling misbalance may lead to the formation of
quasi-periodic patterns (see, e.g., Zavershinskii et al. 2019) at
the linear stage, or even to a sequence of self-sustaining shock
pulses (see, e.g., Zavershinskii et al. 2020; Chin et al. 2010) at
the non-linear stage. It was also shown that heating/cooling
processes are responsible for the additional phase shift be-
tween perturbations of various plasma parameters (density,
temperature, etc.) and define the distribution of energy in and
between eigenmodes, e.g. slow and entropy modes. Moreover,
depending on the heating/cooling mechanisms, the efficiency
of the feedback between plasma and eigenmodes may vary
significantly leading to a wide variety of evolution scenarios
for some initial perturbation (see Zavershinskii et al. 2021,
for details).

Duckenfield et al. (2021) found that the damping times
of slow waves due to thermal misbalance are of the order
of 10 – 100 minutes, which coincides with the wave periods
and damping times observed. The observed temperature de-
pendence of the polytropic index (see, e.g., Krishna Prasad
et al. 2018; Van Doorsselaere et al. 2011) can be attributed
to the thermal misbalance effect, as in such medium it be-
come a function of the heating/cooling rates (see Zavershin-
skii et al. 2019, for detail). In addition, the role of thermal
misbalance in estimating the phase shifts is found to be sig-
nificant for high-density and low-temperature loops. Prasad
et al. (2021) showed that variation of heating mechanism can
lead to around a five-fold increase in the phase difference.

The influence of both magnetic structuring and thermal
misbalance on the dispersion properties of slow sausage waves
was investigated by Belov et al. (2021) using the thin flux
tube approximation (Zhugzhda 1996). It was shown that the

frequency dependence of the phase speed is affected by two
features: geometric dispersion and dispersion caused by the
thermal misbalance. In contrast to the phase speed, the wave
decrement is primarily affected by thermal misbalance only.
Moreover, it was demonstrated that neglecting the thermal
misbalance may be the reason for substantial divergence be-
tween the seismological and spectrometric estimations of the
plasma parameters.

The analysis conducted by Belov et al. (2021) is restricted
by the long wavelength limit and, moreover, does not ac-
count for the external medium and, thus, does not describe
the fast waves that are sensitive to its parameters. Without
the wavelength restrictions, the thermal misbalance was an-
alyzed in the slab geometry by van der Linden & Goossens
(1991). However, they focused on the instability of the en-
tropy/thermal mode.

In this paper, we will focus on the properties of fast and
slow MA waves inside a magnetic slab composed of thermally
active plasma without restriction on the wavelength. In Sec-
tion 2, we discuss the basic equations, used assumptions and
introduced characteristic scales. Further, in Section 3, we ob-
tain the differential equation that determines the dynamics
of two-dimensional perturbations in an inhomogeneous mag-
netically structured medium with the thermal misbalance.
Section 4 is devoted to the dispersion relation for fast and
slow kink/sausage modes in the magnetic slab under the as-
sumption of strong magnetic structuring. Further, in Section
5, we apply the obtained results to the solar corona condi-
tions. The discussion and conclusions are presented in Section
6.

2 MODEL

Let us consider a fully ionized plasma where the processes
of heating and radiative cooling take place. The dynamics of
waves and oscillations in such plasma can be described by
the system of MHD equations with an additional term cor-
responding to the non-adiabatic processes in the right hand
side of the energy equation:

∂B

∂t
= ∇× (v ×B) , (1)

∇ ·B = 0 , (2)

ρ
Dv

Dt
= −∇P − 1

4π
B × (∇×B) , (3)

∂ρ

∂t
+∇ · (ρv) = 0 , (4)

ργ

γ − 1

D

Dt

(
P

ργ

)
= −ρQ(ρ, T ) , (5)

P =
kB
m
ρT . (6)

Here ρ, T , and P respectively represent the density, tem-
perature, and pressure of the plasma, while v and B are
the vectors of the plasma velocity and magnetic field. The
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Boltzmann constant and the mean mass per volume, are re-
spectively shown by kB, and m. The adiabatic index is γ =
CP /CV = 5/3, where CV = 3kB/2m and CP = CV + kB/m
are the specific heat capacities at constant volume and pres-
sure, respectively. In addition, D/Dt = ∂/∂t + v · ∇ stands
for the convective derivative. We use the heat-loss function
Q(ρ, T ) =L(ρ, T ) −H(ρ, T ), which is the difference between
radiative cooling L(ρ, T ) and heating H(ρ, T ). The station-
ary state of the medium implies that non-adiabatic processes
balance each otherL(ρ0, T0) = H(ρ0, T0), or Q (ρ0, T0) = 0.

As we have mentioned above, the compression perturba-
tion can disturb the thermal balance and thus some interac-
tion/feedback between the plasma and this perturbation will
take place. It turned out that the intensity of this interac-
tion and its consequences for waves are highly sensitive to
the scale of perturbation (see Zavershinskii et al. 2019), i.e.
its frequency or wavelength.

This particularly concerns the dependence of the phase ve-
locity on the frequency cph = cph(ω) caused by the thermal
activity of the plasma. Using the characteristic timescales:

τV = CV /Q0T , τP = CPT0/ (Q0TT0 −Q0ρρ0) , (7)

one may introduce the ranges of weak (ω |τV,P | � 1) and
strong (ω |τV,P | � 1) impact of the thermal misbalance on
the wave phase speed. Here, ω is the wave frequency. Q0T =
∂Q/∂T |ρ0,T0

, Q0ρ = ∂Q/∂ρ|ρ0,T0
. It was shown by Molevich

& Oraevskii (1988) and Zavershinskii et al. (2019) that the
phase velocity cph(ω) of the slow modes in the homogeneous
thermally active plasma varies from cS to cSQ, where

cS =

√
γ
kBT0

m
, cSQ =

√
τV
τP
γ
kBT0

m
. (8)

The harmonics that are weakly affected by the thermal mis-
balance (ω |τV,P | � 1) are propagating with cS, which is the
standard value for plasma without thermal misbalance, while
in the range (ω |τV,P | � 1), the heating and cooling processes
completely determine the speed of slow waves cSQ.

Speaking of the problem geometry, the two basic models
generally used to analyze waves in the magnetically struc-
tured plasma, namely, magnetic cylinder/tube (see Edwin
& Roberts 1983) and magnetic slab (see Edwin & Roberts
1982). The modes in such geometrical objects as the slab and
the tube are closely related in many aspects. However, any
treatment of waves in a tube involves introduction of Bessel
or Hankel functions. Due to the fact that this complication
is avoided in the slab, such geometry is often used both for
analytical and forward numerical modelling. In this work, we
will also adhere to the geometry of the magnetic slab (see
Fig. 1).

3 SMALL PERTURBATIONS IN MAGNETICALLY
STRUCTURED PLASMA

Next, we consider an unperturbed magnetic field B0 (x) di-
rected along the z -axis and varying in the perpendicular
direction along the x -axis. To satisfy the stationary condi-
tions, the unperturbed pressure and density should also vary
along the x -axis: P0(x), ρ0(x). Let us investigate small am-
plitude perturbations using the standard perturbation theory
method. In this case, we can use the following replacements

Figure 1. The configuration of a magnetic slab in the thermally
active plasma. The magnetic field lines Bi directed along the z -

axis are confined to the slab −x0 6 x 6 x0 and are surrounded

by magnetic field Be of the external plasma. The internal and
external plasma density, pressure and temperature are ρi, Pi, Ti
and ρe, Pe, Te, respectively. The balance of total pressure (23) is

maintained across the slab boundaries x = ±x0. It is also as-
sumed that the plasma inside and outside the slab is in the ther-

mal balance for a steady state, i.e L (ρ0i , T0i ) = H (ρ0i , T0i ) and

L (ρ0e , T0e ) = H (ρ0e , T0e ).

for equations (1) – (6):

ρ = ρ0(x) + ρ1, P = P0(x) + P1, T = T0(x) + T1, (9)

B = B0 (x) + B1 , v = v1 .

Hereinafter, index ”0”means the unperturbed state of plasma,
numerical index ”1”means the perturbation of stationary pro-
file, alphabetic subscripts (”x”, ”y”, ”z”) mean the correspond-
ing component of the vector. Investigation of the small am-
plitude perturbations means that

ρ1
ρ0

∼ P1

P0
∼ T1

T0
∼ B1x

B0
∼
B1y

B0
∼ B1z

B0
∼

∼ v1x
cS

∼
v1y
cS

∼ v1z
cS

∼ ε � 1. (10)

After a number of transformations, the system of equa-
tions (1) – (6) can be reduced to the form:

∂

∂t

(
∂PT
∂t
− ρ0c2A

∂v1z
∂z

+ ρ0
(
c2A + c2S

)
Θ

)
τV +

+
∂PT
∂t
− ρ0c2A

∂v1z
∂z

+ρ0
(
c2A + c2SQ

)
Θ+

+ v1x

(
d

dx

(
B2

0

8π

)
+ c2SQ

dρ0
dx

)
= 0, (11)

∂2v1x
∂t2

= − 1

ρ0

∂2PT
∂x∂t

+ c2A
∂2v1x
∂z2

, (12)

∂2v1y
∂t2

= − 1

ρ0

∂2PT
∂y∂t

+ c2A
∂2v1y
∂z2

, (13)

∂2v1z
∂t2

= − 1

ρ0

∂2PT
∂z∂t

+ c2A

(
∂2v1z
∂z2

− ∂Θ

∂z

)
, (14)

where PT = P1 + (B0/4π)B1z is the total pressure (gas-
dynamic plus magnetic) perturbation; Θ = ∇ · v1; cA =√
B0/4πρ0 is the Alfvén velocity.
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Next, let us use the following Fourier substitution:

v1x = ṽ1x (x) ei(ωt+kyy+kzz), (15)

v1y = ṽ1y (x) ei(ωt+kyy+kzz), (16)

v1z = ṽ1z (x) ei(ωt+kyy+kzz), (17)

PT = P̃T (x) ei(ωt+kyy+kzz), (18)

where ṽ1x, ṽ1y, ṽ1z, P̃T – amplitude components of the ve-
locity vector and total pressure perturbation; ky, kz are the
wave numbers in y- and z -directions, respectively.

Using this substitution and combining equations (11) –
(14), we can obtain the equation for the amplitude of total
pressure perturbation:

P̃T =

[
ρ0
ω2

(
iωτVA

2 +A2
Q

) dṽ1x
dx
−

−
(

d

dx

(
B2

0

8π

)
+ c2SQ

dρ0
dx

)
ṽ1x

]
×

× iω(k2zc
2
A − ω2)(

A2
Q

(
m2

Q + k2y
)

+ iωτVA2
(
m2 + k2y

)) , (19)

where the following notations are introduced:

m2 =

(
k2zc

2
A − ω2

) (
k2zc

2
S − ω2

)
(c2A + c2S) (k2zc

2
T − ω2)

,

m2
Q =

(
k2zc

2
A − ω2

) (
k2zc

2
SQ − ω2

)(
c2A + c2SQ

) (
k2zc

2
TQ − ω2

) ,
A2 =

(
c2A + c2S

) (
k2zc

2
T − ω2),

A2
Q =

(
c2A + c2SQ

) (
k2zc

2
TQ − ω2).

To describe the properties of MHD waves in the thermally
active plasma, it is useful to introduce two additional char-
acteristic values of the phase speed:

cT =

√
c2Sc

2
A

(c2A + c2S)
, cTQ =

√
c2Ac

2
SQ(

c2A + c2SQ
) . (20)

The value cT is a well-known tube speed in the ideal plasma
generally associated with slow waves. This speed is a result
of geometry dispersion caused by the magnetic structuring
only. However, the combination of geometry dispersion and
the dispersion caused by the thermal misbalance leads to the
emergence of the modified tube-speed cTQ, which was intro-
duced by Belov et al. (2021). As we will show further, the cTQ

speed is the low-frequency/long-wavelength limit value of the
slow wave phase velocity for either kink or sausage modes.

Finally, combining the Fourier transformation of equa-
tion (12) with equation (19) differentiated by the x -
coordinate yields:

d

dx

[
ρ0(k2zc

2
A − ω2)

(
iωτVA

2 +A2
Q

)(
A2

Q

(
m2

Q + k2y
)

+ iωτVA2
(
m2 + k2y

)) dṽ1x
dx
−

− ω2(k2zc
2
A − ω2)ṽ1x(

A2
Q

(
m2

Q + k2y
)

+ iωτVA2
(
m2 + k2y

)) ×
×
(

d

dx

(
B2

0

8π

)
+ c2SQ

dρ0
dx

)]
− ρ0

(
c2Ak

2
z − ω2) ṽ1x = 0. (21)

The resulting equation (21) determines the dynamics of two-
dimensional perturbations in an inhomogeneous magnetically
structured medium with the thermal misbalance.

4 DISPERSION RELATION

For the general case of magnetic structuring (i.e., when B0(x)
is an arbitrary function), a solution of the resulting equa-
tion (21) can be obtained only numerically. Therefore, in what
follows, we will consider a simpler case of strong magnetic
structuring (step-function profiles of density and magnetic
field strength).

Let us analyze a magnetic slab with a width of 2x0 and a
magnetic field strength Bi inside it surrounded by a plasma
with field Be (see Fig. 1). We consider that the magnetic field
is given by the following relationship:

B0(x) =

{
Bi, |x| 6 x0,

Be, |x| > x0.
(22)

Hereinafter, indices ”i” and ”e” correspond to the parameters
inside and outside the slab, respectively.

To satisfy the condition of mechanical equilibrium, the to-
tal pressure must be continuous at the boundaries of the mag-
netic slab (at x = ±x0):

Pe +
B2
e

8π
= Pi +

B2
i

8π
. (23)

In addition, for the stationary state, the thermal equilib-
rium in the internal and external plasma should be estab-
lished. This implies that

Q (ρ0i , T0i) = 0, Q (ρ0e , T0e) = 0. (24)

Now, let us analyze the two-dimensional perturbations
and neglect the dependence on the y-coordinate. Then, the
wavenumber in the y-direction ky should be set to zero. For
such perturbations, the transverse component of the velocity
vector is given as vx = v̂x (x) ei(ωt+kzz), where v̂x (x) is the
amplitude of the disturbance. We will study the propagation
of waves emerging inside the slab and vanishing outside it
(i.e., vx → 0 at x→ ±∞).

In the case considered, the differential equation for the ve-
locity perturbation (21) can be rewritten in the following
forms:

d2v̂1x
dx2

− k2xi v̂1x = 0, |x| 6 x0,

d2v̂1x
dx2

− k2xe v̂1x = 0, |x| > x0, (25)

where, to simplify the formula, we introduce k2xi,e as fol-
lows:

k2xi,e =

(
A2

Qi,e
m2

Qi,e
+ iωτV i,eA

2
i,em

2
i,e

)
(
A2

Qi,e
+ iωτV i,eA

2
i,e

) .

Here, we should mention that in the thermally active plasma
kx becomes complex. This is different from the ideal plasma
case (see Edwin & Roberts 1982), where the quantity kx (or
m in the author’s original notation) can be either real or pure
imaginary depending on the sign of k2x. In the ideal plasma,
the case of k2x > 0 is associated with the surface modes, and
the case of k2x < 0 is associated with the body modes. How-
ever, due to the kx complexity, distinguishing between sur-
face and body modes become less clear in the non-adiabatic
plasma as the modes are partly surface and partly body.

Nevertheless, some distinguishing can be conducted by the
analysis of the real part Re

(
k2x
)
. Then, if we obtain that the
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real part is positively defined Re
(
k2x
)
> 0, we can conclude

that Re (kx) > Im (kx). This means that the wave under con-
sideration is localized near the boundary of the slab and thus
can be considered as the ‘rather surface than body’ mode. In
the opposite case of Re

(
k2x
)
< 0, the analogy would suggest

that Re (kx) < Im (kx). Thus, such waves can be called as
”rather body than surface”. In what follows, we omit the de-
tailed description and call the waves simply surface and body
modes implying ”rather surface than body” and ”rather body
than surface”, respectively.

Further, we will consider that Re(kx) > 0. Thus, solv-
ing equations (25) and taking into account that v̂1x→ 0 for
|x| → ∞, which, according to the above mentioned, implies
that Re

(
k2xe
)
> 0 for |x|→∞ (depending on the current con-

ditions, inside the slab, the sign of Re
(
k2xi
)

can be arbitrary),
we obtain

v̂1x =


αicosh (kxix) + βisinh (kxix) , |x| 6 x0;
βe exp (kxe (x+ x0)) , x < −x0;
αe exp (−kxe (x− x0)) , x > x0.

(26)

Solution (26) depends on four unknown constants αi, βi,
αe and βe. In order to describe the dispersion properties of
waves, these quantities should be determined (up to a multi-
plicative constants). To do this, we first need to choose the
symmetry type for the mode of interest. After this step is
done, to obtain the dispersion relation for the chosen mode,
we should join the solutions inside and outside the slab by
applying boundary conditions.

As we have mentioned earlier, there are two well-known
symmetry types for waves in the magnetic slab. These types
are the so-called sausage and kink waves corresponding to
the symmetric and anti-symmetric perturbations of the slab
boundaries, respectively. Then, the choice of the sausage or
kink mode requires to set αi = 0 or βi = 0, respectively.

To join the solutions at boundaries, we have two conditions,
namely, the continuity of velocity component vx and the con-
tinuity of total pressure PT . The equations for the constants
corresponding to the first condition can be easily written us-
ing equation (26). To write the equations corresponding to
the second condition, one can use the expression for the to-
tal pressure perturbation P̂T . Using equation (19), it can be
written in the general form as:

P̂T = i
ρ0i,e
ω

(k2zc
2
Ai,e
− ω2)

k2xi,e

dv̂1x
dx

. (27)

The substitution of solutions (26) in equation (27) allows
us to complete the system of equations for constants αi, βi,
αe and βe, and thus to determine the dispersion relations.

Finally, the dispersion relations for the full set (fast/slow
and body/surface) of sausage/kink magnetoacoustic waves in
the magnetic slab composed of the thermally active plasma
are:

(k2zc
2
Ai− ω

2)
kxe
kxi

=−ρ0e
ρ0i

(
k2zc

2
Ae− ω

2)( coth (kxix0)
tanh (kxix0)

)
. (28)

Here, we use hyperbolic functions Coth and Tanh for kink
and sausage modes, respectively. Further, we will apply these
equations to calculate the dependencies of phase velocities
and increment/decrement of MA waves on wavenumbers in
the solar atmosphere conditions. It should be mentioned that
in the absence of thermal misbalance (τV i,e→ 0), the equa-
tions (28) reduce to those obtained for ideal plasma by Edwin
& Roberts (1982).

5 APPLICATION TO SOLAR CORONA

5.1 Heating and cooling model

Since the obtained equations (28) are transcendental, we will
solve them numerically to highlight the main influence of the
thermal misbalance on the dispersion properties of magne-
toacoustic waves in the magnetic slab. As an illustrative ex-
ample, we will use the solar corona conditions. Before do-
ing this, we should specify the cooling L(ρ, T ) and heating
H(ρ, T ) rates.

The cooling L(ρ, T ) in the coronal conditions is mainly due
to optically thin radiation:

L(ρ, T ) =
ρ

4m2
Λ(T ) , (29)

where Λ(T ) is a function of radiation losses depending on
the plasma temperature. In this paper, the function Λ(T ) is
calculated from the CHIANTI Version 10.0 database.

The heating rate H(ρ, T ) is usually modeled by the power
dependence on the thermodynamic parameters of the plasma
(Rosner et al. 1978b; Dahlburg & Mariska 1988; Ibanez S. &
Escalona T. 1993):

H(ρ, T ) = hρaT b, (30)

where h is a constant calculated in order to balance cooling
under steady state conditions (H(ρ0, T0) = L(ρ0, T0)); a and
b are the constants determined by a specific heating mecha-
nism. In general, a different form of the heating function will
result in a different way for some initial perturbation to evolve
(see Zavershinskii et al. 2021, for details). Particularly, there
are some forms of heating mechanisms implying the ampli-
fication of MA waves leading to formation of quasi-periodic
perturbations (see Zavershinskii et al. 2019; Kolotkov et al.
2019). There are also some regimes of the thermal misbalance
where not only MA waves but also entropy/thermal modes
are unstable (see Claes & Keppens 2019). However, analysis
of the unstable regimes modes is beyond the scope of this
research. It is a separate problem that will be addressed in
our future studies.

For our calculations, we will use the heating scenario seis-
mologically proposed by Kolotkov et al. (2020) using the ob-
servations of the damped slow magnetoacoustic waves in long-
lived coronal plasma structures. This mechanism is based
on the assumption that the thermal stability (attenuation of
thermal mode) τV,P > 0 and acoustic stability (attenuation
of MA modes) (τP − τV ) /τP τV > 0 conditions are always
satisfied in the coronal plasma. The power indices of heating
function (30) for this scenario are (a = 0.5, b = −3.5).

5.2 Dispersion properties

The physical conditions of the coronal loops can vary widely
in density contrast, thickness, magnetic field strength, tem-
perature and etc. In this paper, we will limit our discussion to
consideration of the three sets of parameters corresponding
to some different loop types. Thus, in what follows, we will
consider a magnetic slab with the parameters shown in Table
1.

Let us introduce the characteristic scale which can be asso-
ciated with the thermal misbalance. Using infinite magnetic
field approximation, Zavershinskii et al. (2019) showed that
the effect of dispersion caused by the thermal misbalance is
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Table 1. Slab parameters used for calculations.

Parameter Value

”Warm” loop ”Hot” loop ”Cool” loop

Temperature inside the slab (T0i ) 1 MK 6 MK 0.6 MK

Temperature outside the slab (T0e ) 1 MK 6 MK 0.6 MK
Number density inside the slab (n0i ) 1010 cm−3 1011 cm−3 109 cm−3

Density contrast (n0i/n0e ) 5 10 2

Magnetic field strength inside the slab (B0i ) 10 G 50 G 5 G
Slab half-width (x0) 1 Mm 1 Mm 1 Mm

most pronounced when the wave period is about the char-
acteristic times τV,P and reaches its maximum near the fre-
quency:

ωM = (τV τP )−
1
2 . (31)

In our calculations, we assume that heating/cooling pro-
cesses act both inside and outside the slab. However, due
to the density contrast, the cooling (29) and heating (30)
rates outside the slab are weaker. As we consider the heat-
ing/cooling rates as power law functions, we can find that
the characteristic times τV,P (7) outside the slab are 2,
5, and 10 of the value inside the slab for the chosen den-
sity contrast of ”cool”, ”warm”, and ”hot” loops, respectively.
Thus, the impact of the thermal misbalance from the external
plasma is suppressed. We choose the dimensionless wavenum-
ber kZM = Re (kz)x0 calculated by solving equation (28) as
a spatial scale associated with the thermal misbalance. For
solution, we use ωMi , which is the frequency of the maximum
dispersion effect in the internal plasma.

Generally, the phase velocities of the fast and slow waves in
the solar corona vary in the weakly comparable ranges. This
is due to the fact that plasma beta in such medium is usually
less than unity, which implies a strong difference between the
Alfvén and the sonic speeds. For this reason, we will use two
spatial scales on the phase velocity plots to illustrate of the
fast and slow wave dispersion.

5.2.1 ”Warm” loop

The phase velocities of the fast and slow sausage/kink MA
waves calculated for the sets of parameters corresponding to
”warm” coronal loop are shown in Fig. 2. We consider both
cases of the thermally active and ideal plasma in order to
demonstrate their differences. According to our calculations,
all found roots correspond to body waves.

Speaking of slow MA waves, one may notice that the ther-
mal misbalance leads to considerable changes in the low-
frequency (long-wavelength) range of the spectrum. It can
be seen that the phase speed of the slow MA waves varies
in the range between cTQi and cSi . This statement is valid
for both the kink and the sausage modes. For both sym-
metry types, the long-wavelength limit value of the phase
speed lim

kzx0→0
Re(ω)/k is no longer the usually assumed in-

ternal tube speed cTi but the modified tube speed cTQi (20).
Moreover, the combination of two dispersion sources, namely,
the geometry and thermal misbalance, leads to a change in
the period where the dispersion effect is most pronounced.
Using calculation, it can be estimated as ∼ 700 s correspond-
ing to kzx0 ∼ 0.075, compared to PM = 2π/ωMi ≈ 860 s

corresponding to kZM ≈ 0.025 for the sausage waves ( indi-
cated by star in Fig. 2).

At the same time, the thermal misbalance seems to have
no significant affect on the fast MA waves. The phase speed
dependencies on the wavenumber calculated for the ideal
plasma and thermally active plasma are practically identi-
cal (see Fig. 2). In other words, the slab geometry remains
the main source of the phase speed dispersion for fast waves.
Variations of the heating function satisfying the seismologi-
cal constraints proposed in (Kolotkov et al. 2020) also do not
lead to any considerable consequences either. As in the ideal
plasma, the phase speed of the fast waves is varying between
cAi and cAe .

The thermal misbalance also causes the frequency depen-
dent dissipation of waves (or amplification in the case of
acoustic instability). The decrements of the fast and slow
sausage/kink MA waves calculated for the chosen set of pa-
rameters are shown in Fig. 3. It can be seen that for the
considered regime of thermal misbalance all modes are de-
caying.

It has been shown that the slow MA waves decay/grow
faster than the fast MA waves in the uniform low-beta
plasma (see Zavershinskii et al. 2020, for details). The same
is true for the magnetically structured plasma. However,
there are some changes in the relationship between the incre-
ment/decrement and the wavenumber. In contrast to the case
of the uniform plasma, the dependence of the fast wave in-
crement/decrement becomes non-monotonic. It reaches some
maximum value and then tends to zero in the high-frequency
(short-wavelength) limit. The dependence of the slow-wave
increment on the wavenumber remains monotonic.

5.2.2 ”Hot” loop

For the plasma parameters corresponding to the ”hot” loop
(see the middle column in Table 1), the phase velocities of the
MA waves take the form shown in Fig. 4. As in the previous
case, all the obtained fast and slow modes are body modes.
Following the above line of reasoning, we will describe phase
velocities first and start with slow waves. Due to a slight in-
crease in the plasma beta, the variations of slow waves phase
velocities caused by geometrical effects become more visible
(compare the plots shown in the right columns in Fig. 2 and
4). The impact of geometry dispersion is more pronounced
for the sausage waves than for kink waves.

One may notice that for the considered plasma parame-
ters, the combined effect of geometrical and thermal disper-
sion (indicated by star in Fig. 4 ) is most pronounced around
kzx0 ∼ 0.0095, which corresponds to the period ∼ 2600 s.
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Figure 2. Dependencies of the phase velocity Re(ω)/k on the dimensionless wavenumber kx0 calculated for the ”warm” coronal loop (see

Table 1). We use different spatial scales for fast and slow MA waves. The range of velocities on vertical axis, where the scale is changing,
is indicated by saw-teeth. The left column corresponds to the thermally active medium. The right panel shows the ideal plasma case. The

top and bottom panels are for the sausage and kink modes, respectively. Different colors correspond to different modes. The star indicates
the approximate position where the dispersion effect of slow waves is the most pronounced. Grey dashing indicates the range where no

roots can be found. The slow modes in the thermally active plasma can be found between the sound speed cSi
and the modified tube

speed cTQi
. The fast modes in the plasma with the thermal misbalance range between cAi

and cAe .
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Figure 3. Decrement Im(ω) as a function of dimensionless wavenumber kx0 calculated for ”warm” coronal loop (see Table 1). The left
column correspond to the sausage modes. The right panel is for the kink modes. Different colors correspond to different modes.

Such an increase in the dispersion timescale is caused by
changes in the characteristic times τV , τP (7). The misbalance
timescales, in turn, are defined by the derivatives of heating
(30) and cooling (29) rates, and as a consequence, they are
quite sensitive to the absolute value and slope of these func-

tions. For the sake of brevity, we omit the details of changing
the derivatives of functions. However, we want to emphasize
that during the estimations one should take special attention
to a strong dependence of the cooling rate on temperature
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Figure 4. Dependencies of the phase velocity Re(ω)/k on the dimensionless wavenumber kx0 calculated for ”hot” coronal loop (see Table

1). We use different spatial scales for the fast and slow MA waves. The range of velocities on vertical axis, where the scale is changing is
indicated by saw-teeth. The left column corresponds to the thermally active medium. The right panel shows the ideal plasma case. The

top and bottom panels are for the sausage and the kink modes, respectively. Different colors corresponds to different modes. The star
indicates the approximate position where the dispersion effect of the slow waves is the most pronounced. Grey dashing indicates the range

where no roots can be found. The slow modes in the thermally active plasma can be found between the sound speed cSi
and the modified

tube speed cTQi
. The fast modes in the plasma with the thermal misbalance range between cAi

and cAe .

0 0.5 1 1.5 2 2.5 3
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

kzx0

Im
(ω

)/
s-
1

Fast sausage waves

Slow sausage waves

0 0.5 1 1.5 2 2.5 3
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

kzx0

Im
(ω

)/
s-
1

Fast kink waves

Slow kink waves

Figure 5. Decrement Im(ω) as a function of dimensionless wavenumber kx0 calculated for ”hot” coronal loop (see Table 1). The left column
correspond to the sausage modes. The right panel is for the kink modes. Different colors correspond to different modes.

Λ(T ) (see Del Zanna et al. 2021) and the choice of a heating
model, as the variations in estimations could be dramatic.

It can be seen that the thermal misbalance still have no sig-
nificant impact on the phase velocities of the fast MA waves.

For the considered parameters of ”hot” coronal loop, the
fast and slow waves are still decaying modes (see Fig.5). As
a result of the above mentioned slight increase of the plasma
beta, the difference between absolute values of the slow wave

and fast wave decrements decreases. This is in agreement with
the predictions made for the MA waves in the uniform plasma
(see Zavershinskii et al. 2020). It should be noted that for
the case of ”hot” loop, not only the fast waves have a non-
monotonic dependence of the decrement on the wavenum-
ber. The decrement of the slow sausage wave shows a non-
monotonic behaviour as well. However, as in the case of the
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Figure 6. Dependencies of the phase velocity Re(ω)/k on the dimensionless wavenumber kx0 calculated for the ”cool” coronal loop (see
Table 1). We use different spatial scales for the fast and slow MA waves. The range of velocities on vertical axis, where the scale is

changing, is indicated by saw-teeth. The left column corresponds to the thermally active medium. The right panel shows the ideal plasma

case. The top and bottom panels are for the sausage and the kink modes, respectively. Different colors corresponds to different modes.
The star indicates the approximate position where the dispersion effect of slow waves is the most pronounced. Grey dashing indicates the

range where no roots can be found. The slow modes in the thermally active plasma can be found between the sound speed cSi
and the

modified tube speed cTQi
. The fast modes in the plasma with the thermal misbalance are in the range between cAi

and cAe .
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Figure 7. Decrement Im(ω) as a function of dimensionless wavenumber kx0 calculated for the ”cool” coronal loop (see Table 1). The left
column correspond to the sausage modes. The right panel is for the kink modes. Different colors correspond to different modes.

”warm” loop, the decrement of the kink waves grows mono-
tonically with the wavenumber.

5.2.3 ”Cool” loop

Here we are dealing with the influence of the thermal misbal-
ance and magnetic structuring on the MA waves using the

plasma parameters corresponding to the ”cool” loop (see the
right column in Table 1). The phase velocities calculated for
these parameters are shown in Fig. 6.

Let us, as before, start with the phase velocity of the slow
waves. The used parameters correspond to the lower plasma
beta than in the cases of ”warm” and ”hot” plasma. As a re-
sult, the difference between the ideal plasma sound cSi and
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tube cTi speeds decreases (compare the plots shown in the
right columns in Figs. 2, 4 and 6). The thermal misbal-
ance typically affects to a greater extent the speed of har-
monics in the long-wavelength range of the spectrum. In the
long-wavelength limit (kzx0 → 0), the phase speed exceeds
the value cTQi = 83 km/s that is 30 % less than the usually
assumed cTi . The greatest increase in the slow wave phase
speed with the wavelength (indicated by star in Fig. 6 ) is
now seen around kzx0 ∼ 0.0125, which corresponds to the
period ∼ 5100 s. In other words, for the considered heating
mechanism, the ”warm” coronal loops have the lowest period
where the dispersion effect caused by thermal misbalance and
magnetic structuring is most pronounced.

In the case under consideration, the situation with fast MA
waves is similar to those discussed before, i.e. the main source
of the fast wave phase velocity dispersion remains the geome-
try of the wave-guide. As a result of the plasma beta decrease,
the difference between the slow and fast wave decrement be-
comes greater (see Fig.7). This result also agrees well with the
predictions made for the MA waves in the uniform plasma
(see Zavershinskii et al. 2020). It can be seen that in the
”cool” plasma conditions, the decrement behaviour of both
the sausage and kink slow waves becomes non-monotonic.

6 DISCUSSION AND CONCLUSION

Current studies into the thermal misbalance effect as applied
to the solar atmosphere conditions are mainly proceeding
from the assumptions related to the wave-guide geometry.
The most commonly used approach involves applying the in-
finite magnetic field approximation (see Kolotkov et al. 2020;
Prasad et al. 2021, etc). Encouraging results were obtained
using the second or zero order thin flux tube approximation
(see, e.g., Belov et al. 2021; Kolotkov et al. 2021; Duckenfield
et al. 2021). However, these approaches are applicable for the
description of the slow body sausage MA modes only. In this
paper, we investigated the propagation of the MA waves in
a magnetically structured thermally active plasma without
restrictions on the thickness of the waveguide or on the mag-
netic field strength.

To describe the two-dimensional compressional perturba-
tions in the plasma with thermal misbalance, we have ob-
tained a differential equation (21) that allows us to analyze
the evolution and to define the dispersion properties of waves
in the magnetic slab with some arbitrary profile of density
and magnetic field strength across the slab. Furthermore, it
can be used to analyze the resonant absorption effect in the
non-adiabatic plasma, which is one of major problems that
need to be addressed.

To investigate the dispersion properties of the MA waves,
we have considered the case of a strong magnetic structur-
ing (the step-function profiles of the density and magnetic
field strength) in the slab geometry. The general approach
used in this paper makes it possible to describe various types
of wave modes. The dispersion relations for the fast/slow
body/surface kink/sausage MA waves are written in the form
of equations (28). This result widens the spectrum of modes
that can be investigated in the context of the thermal mis-
balance problem (the problem of the coronal heating/cooling
influence on the wave properties). We should remind that in
the thermally active plasma, the modes are not purely body

or purely surface modes but ”rather body than surface” or
”rather surface than body”, respectively.

First, we solved the relations (28) numerically using the
parameters corresponding to coronal conditions. In our cal-
culations, we are using the plasma parameters corresponding
to the three different loop types. The found modes for the
considered conditions are body modes implying ”rather body
than surface” modes. Next, we separated the results obtained
for the fast and slow waves.

As far as the slow waves are concerned, we have found out
that, in contrast to the ideal plasma case, the thermal misbal-
ance can change the slow-wave phase speed dependence. In
particular, their phase speed tends to the modified tube speed
cTQi (20), which was previously defined in (Belov et al. 2021)
using the thin flux tube approximation. The modified tube
speed cTQi is a consequence of both thermal-misbalance and
finite-slab-width effects. In this paper, we have established
that this result is applicable for both the sausage and the kink
slow modes. The tendency is true for all the plasma parame-
ters we considered. However, the period when the dispersion
effects caused by the combination of magnetic structuring
and thermal misbalance are most pronounced, is shorter in
the ”warm” loops (≈ 860 s), than in the ”cool” (≈ 5100 s)
and ”hot” (≈ 2600 s) loops. This tendency means that prop-
agation of the slow-wave harmonics close to the fundamen-
tal mode is primarily influenced by the heating and cooling
processes. As a result, the effective adiabatic index for these
harmonic is different from the standard value. This result is
of interest in the context of the observed temperature depen-
dence of coronal adiabatic index (Krishna Prasad et al. 2018;
Van Doorsselaere et al. 2011) and its seismological definition
using the propagating (Prasad et al. 2021) and standing slow
waves. Additionally, this phase dependency can be crucial
for the probing magnetic field strength by propagating slow
waves (Jess et al. 2016).

The heating mechanism considered in this paper implies
damping all compressional modes. We have established that
the damping rate of not only the sausage, but also of the
kink modes depends on the wavenumber (frequency). More-
over, behaviour of the wave decrement varies with the loop
type. In the case of the ”warm” loop, the dependencies of
increment/decrement on the wavenumber for both types of
mode symmetry is monotonic. The decrement of kink mode is
slightly greater than the decrement of the sausage mode in the
high-wavenumber range. As for the case of the infinite mag-
netic field approximation (Zavershinskii et al. 2019), the max-
imum decrement is reached in the range of high wavenumbers
(frequencies). The minimum decay time is about 8 minutes,
which coincides with the observed periods of waves and oscil-
lations in the corona. Thus, the thermal misbalance can have
an impact on the observed dissipation of slow waves propa-
gating in the solar corona (Marsh et al. 2011; Prasad et al.
2014).

In the case of the ”hot” loop, the decrement of the slow kink
waves grows with respect to the wavenumber. The minimum
decay time is about 30 minutes. However, the sausage wave
decrement shows a non-monotonic behaviour: it reaches the
minimum decay time of ∼ 25 minutes and then decreases
(see the left column in Fig. 7). In the ”cool” loop plasma,
both the sausage and the kink slow waves demonstrates a
non-monotonic behaviour of decrement. For both cases, the
minimum decay time is about 46 minutes.
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The results for the fast MA waves are quite different. Our
analysis has revealed that the thermal misbalance caused by
the temperature and density dependent heating/cooling pro-
cesses has no significant effect on the phase speed of the kink
and sausage fast MA waves. Thus, even in the non-adiabatic
plasma, the main source of the fast-wave phase speed disper-
sion is the geometry of the slab.

The thermal activity of the plasma provides a possibility
for the fast kink/sausage MA waves to be damped/amplified
depending on the acting misbalance regime. As it was ob-
tained for the waves in the uniform plasma (see Zavershinskii
et al. 2020, for details), the fast waves have a lower decrement
than the slow waves in the low-beta plasma. This statement is
valid for the magnetically structured plasma as well. Further-
more, our calculations have shown that the difference between
the slow and fast wave decrement grows with the decrease
in plasma beta, which is also in agreement with the results
obtained for the uniform plasma. In contrast to the case of
the uniform plasma, the dependence of the decrement on the
wavenumber becomes non-monotonic: it reaches some maxi-
mum value and then tends to zero in the high-wavenumber
range of spectrum. For the considered heating mechanism,
the damping is rather weak and cannot explain the observed
damping of the kink modes (see, e.g., Pascoe et al. 2016). The
minimum decay time can be estimated as 46 minutes, and 55
minutes, for the ”warm”, and ”hot” loop, respectively. The in-
fluence of the thermal misbalance damping on the waves in
the ”cool” loop is negligible. However, the obtained depen-
dence of the fast wave decrement/increment is of great in-
terest for the problem of fast kink oscillation excitation (see
Nakariakov et al. 2021, for details). The regime of acoustic
instability will lead to the growth of perturbation harmonics
with the fastest growth rate for the harmonics near the incre-
ment/decrement maximum. We will analyze this problem in
our future study taking into account a possible dependence of
the heating rate on the magnetic field strength and additional
dissipation mechanisms.

In conclusion, we want to emphasize that the constructed
theory extends out knowledge of the properties and evolution
of magnetoacoustic modes in the solar corona. This further
understanding provides possibility to use these waves not only
as a tool for the estimating of plasma parameters, but also as
a tool for the estimating the non-adiabatic processes (e.g., for
phenomenological determination of unknown coronal-heating
mechanisms).
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APPENDIX

Further, we will describe the main mathematical steps taken
to derive equations (11) – (14). Linearizing the system of
equations (1) – (6) and projecting the obtained equations
onto the coordinate axes will gives us a set of equations shown
below:

∂B1x

∂t
= B0

∂V1x

∂z
, (32)

∂B1y

∂t
= B0

∂V1y

∂z
, (33)

∂B1z

∂t
= B0

∂V1z

∂z
−B0Θ− V1x

dB0

dx
, (34)

∇ ·B1 = 0 , (35)

ρ0
∂V1x

∂t
= −∂PT

∂x
+
B0

4π

∂B1x

∂z
, (36)

ρ0
∂V1y

∂t
= −∂PT

∂y
+
B0

4π

∂B1y

∂z
, (37)

ρ0
∂V1z

∂t
= −∂PT

∂z
+
B0

4π

∂B1z

∂z
+
B1x

4π

dB0

dx
, (38)

∂ρ1
∂t

+ (v1 · ∇) ρ0 + ρ0Θ = 0, (39)

1

γ − 1

(
∂P1

∂t
+ (v1 · ∇)P0

)
− γ

γ − 1

P0

ρ0

(
∂ρ1
∂t

+ (v1 · ∇) ρ0

)
=

= −ρ0 (Q0TT1 +Q0ρρ1) , (40)

P1 =
kB
m

(ρ0T1 + ρ1T0) . (41)

First, the perturbation of temperature T1 is expressed in
terms of the perturbations of density ρ1 and pressure P1 us-
ing equation 41. By substituting the obtained expression, the
temperature perturbation T1 is excluded from equation 40.
The next step is to exclude the density perturbation ρ1 from
the modified equation 40. To this end, equation 40 is differ-
entiated with respect to time, whereas equation 39 is used
as a substitution. As a result of several simplifications, the
following equation for the perturbations of pressure P1 and
velocity vector v1 can be obtained:

∂

∂t

(
∂P1

∂t
+ (v1 · ∇)P0 + γP0Θ

)
=

= −Q0T

CV

(
∂P1

∂t
+
kB
m

(Q0TT0 −Q0ρρ0)

Q0T
((v1 · ∇) ρ0 + ρ0Θ)

)
.

(42)

In terms of characteristic timescales 7 and speeds 8, this equa-
tion can be rewritten as:

∂

∂t

(
∂P1

∂t
+ (v1 · ∇)P0 + c2Sρ0Θ

)
=

= − 1

τV

(
∂P1

∂t
+ c2SQ (v1 · ∇) ρ0 + c2SQρ0Θ

)
. (43)

Our next objective is to obtain equation 11 describing the
perturbation of total pressure PT . By multiplying equation
34 by B0/4π and by performing simplification, we obtain the
expression shown below:

∂

∂t

(
B0B1z

4π

)
=
B2

0

4π

(
∂V1z

∂z
−Θ

)
− V1x

B0

4π

dB0

dx
. (44)

This equation can have two modifications. The first one is
obtained by means of differentiation with respect to time. For
the second modification, equation 44 is multiplied by 1/τV .
Further, equation 11 can be obtained by summing up the two
previously derived equations and equation 42 and by intro-
ducing the Alfven speed cA and the total pressure perturba-
tion PT .

The equation for the x -component of the velocity vector 12
is derived by differentiating equation 36 with respect to time
and excluding the magnetic field derivative ∂B1x/∂t using
equation 32. Similarly, equations 13 and 14 can be derived
using equations 37, 33 and 38, 34, respectively.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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